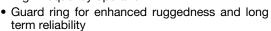



Vishay Semiconductors

COMPLIANT


## Photovoltaic Solar Cell Protection Schottky Rectifier, 15 A



| PRODUCT SUMMARY    |              |  |  |  |
|--------------------|--------------|--|--|--|
| I <sub>F(AV)</sub> | 15 A         |  |  |  |
| $V_{R}$            | 30 V to 45 V |  |  |  |

#### **FEATURES**

- 150 °C T<sub>J</sub> operation
- Low forward voltage drop
- High frequency operation



- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- · Lead (Pb)-free plating
- Compliant to RoHS directive 2002/95/EC
- Designed and qualified for industrial level

#### **DESCRIPTION**

The VS-150SQ... axial leaded Schottky rectifier series has been optimized for very low forward voltage drop, with moderate leakage. The proprietary barrier technology allows for reliable operation up to 150 °C junction temperature. Typical applications are in switching power supplies, converters, freewheeling diodes, and reverse battery protection.

 $T_J \le 200$  °C for use in solar cell box as a bypass diode for protection, using DC forward current without reverse bias.

| MAJOR RATINGS AND CHARACTERISTICS |                                 |             |       |  |  |
|-----------------------------------|---------------------------------|-------------|-------|--|--|
| SYMBOL                            | CHARACTERISTICS                 | VALUES      | UNITS |  |  |
| I <sub>F(AV)</sub>                | DC                              | 15          | A     |  |  |
| V <sub>RRM</sub>                  |                                 | 30 to 45    | V     |  |  |
| I <sub>FSM</sub>                  | t <sub>p</sub> = 5 µs sine      | 2150        | A     |  |  |
| V <sub>F</sub>                    | 15 Apk, T <sub>J</sub> = 125 °C | 0.48        | V     |  |  |
| T <sub>J</sub>                    | Range (1)                       | - 55 to 150 | °C    |  |  |

#### Note

(1)  $T_J \le 200$  °C for DC current without reverse voltage

| VOLTAGE RATINGS                      |           |             |             |             |             |       |
|--------------------------------------|-----------|-------------|-------------|-------------|-------------|-------|
| PARAMETER                            | SYMBOL    | VS-150SQ030 | VS-150SQ035 | VS-150SQ040 | VS-150SQ045 | UNITS |
| Maximum DC reverse voltage           | $V_{R}$   | - 30        | 35          | 40          | 45          | V     |
| Maximum working peak reverse voltage | $V_{RWM}$ | 30          | 35          | 40          | 45          | V     |

| ABSOLUTE MAXIMUM RATINGS                            |                    |                                                                                                                      |                                                   |        |       |
|-----------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------|-------|
| PARAMETER                                           | SYMBOL             | TEST CONDITIONS                                                                                                      |                                                   | VALUES | UNITS |
| Maximum average forward current See fig. 5          | I <sub>F(AV)</sub> | For DC solar application T <sub>C</sub> = 172 °C (T <sub>J</sub> = 200 °C)                                           |                                                   | 15     |       |
| Maximum peak one cycle non-repetitive surge current | l                  | 5 μs sine or 3 μs rect. pulse                                                                                        | Following any rated load condition and with rated | 2150   | Α     |
| See fig. 7                                          | I <sub>FSM</sub>   | 10 ms sine or 6 ms rect. pulse                                                                                       | V <sub>RRM</sub> applied                          | 340    |       |
| Non-repetitive avalanche energy                     | E <sub>AS</sub>    | T <sub>J</sub> = 25 °C, I <sub>AS</sub> = 1.8 A, L = 7.4 mH                                                          |                                                   | 12     | mJ    |
| Repetitive avalanche current                        | I <sub>AR</sub>    | Current decaying linearly to zero in 1 $\mu$ s<br>Frequency limited by, $T_J$ maximum $V_A = 1.5 \times V_R$ typical |                                                   | 1.8    | А     |

## VS-150SQ... Series

# Vishay Semiconductors

## Photovoltaic Solar Cell Protection Schottky Rectifier, 15 A



| ELECTRICAL SPECIFICATIONS       |                       |                                                                |                                       |        |       |
|---------------------------------|-----------------------|----------------------------------------------------------------|---------------------------------------|--------|-------|
| PARAMETER                       | SYMBOL                | TEST CONDITIONS                                                |                                       | VALUES | UNITS |
|                                 | . V <sub>EM</sub> (!) | 15 A                                                           | T <sub>J</sub> = 25 °C                | 0.54   |       |
|                                 |                       | 30 A                                                           |                                       | 0.67   | V     |
| Maximum forward voltage drop    |                       | 15 A                                                           | T <sub>J</sub> = 125 °C               | 0.48   |       |
| See fig. 1                      |                       | 30 A                                                           |                                       | 0.62   |       |
|                                 |                       | 15 A                                                           | - T <sub>J</sub> = 200 °C             | 0.46   |       |
|                                 |                       | 30 A                                                           |                                       | 0.61   |       |
| Maximum reverse leakage current | 1                     | T <sub>J</sub> = 25 °C                                         | V <sub>B</sub> = Rated V <sub>B</sub> | 1.75   | mA    |
| See fig. 2                      | I <sub>RM</sub>       | T <sub>J</sub> = 125 °C                                        | v <sub>R</sub> = nateu v <sub>R</sub> | 70     | IIIA  |
| Maximum junction capacitance    | C <sub>T</sub>        | $V_R = 5 V_{DC}$ , (test signal range 100 kHz to 1 MHz), 25 °C |                                       | 900    | pF    |
| Typical series inductance       | L <sub>S</sub>        | Measured lead to lead 5 mm from body                           |                                       | 10.0   | nH    |
| Maximum voltage rate of change  | dV/dt                 | Rated V <sub>R</sub> 10 00                                     |                                       | 10 000 | V/µs  |

#### Note

 $<sup>^{(1)}\,</sup>$  Pulse width  $<300~\mu s,$  duty cycle <2~%

| THERMAL - MECHANICAL SPECIFICATIONS         |                                  |                                |             |       |  |
|---------------------------------------------|----------------------------------|--------------------------------|-------------|-------|--|
| PARAMETER                                   | SYMBOL                           | TEST CONDITIONS                | VALUES      | UNITS |  |
| Maximum junction temperature range          | T <sub>J</sub> <sup>(1)</sup>    |                                | - 55 to 150 | °C    |  |
| Maximum storage temperature range           | T <sub>Stg</sub>                 |                                | - 55 to 150 |       |  |
| Maximum thermal resistance,                 | $R_{thJL}$                       | DC operation; 1/8" lead length | 8.0         |       |  |
| junction to lead                            | R <sub>thJL</sub> <sup>(2)</sup> |                                | 4.0         | °C/W  |  |
| Typical thermal resistance, junction to air | $R_{\text{thJA}}$                |                                | 44          | 3, 1, |  |
| Approximate weight                          |                                  |                                | 1.4         | g     |  |
| Approximate weight                          |                                  |                                | 0.049       | oz.   |  |
| Marking device                              |                                  |                                | 150S        | Q030  |  |
|                                             |                                  | Case style DO-204AR (JEDEC)    | 150SQ035    |       |  |
|                                             |                                  |                                | 150SQ040    |       |  |
|                                             |                                  |                                | 1508        | Q045  |  |

#### Notes

 $<sup>^{(1)}</sup>$  T<sub>J</sub> = 200 °C for DC solar application without reverse voltage time  $\leq 1$  h

<sup>&</sup>lt;sup>(2)</sup> Applicable when used in junction box at  $I_F = 12$  A,  $T_{box} = 77$  °C



### Photovoltaic Solar Cell Protection Schottky Rectifier, 15 A

# Vishay Semiconductors

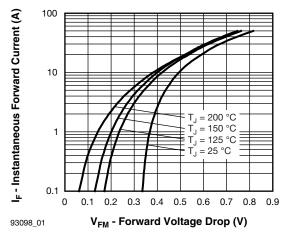



Fig. 1 - Maximum Forward Voltage Drop Characteristics

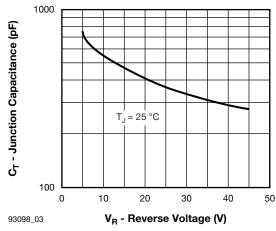



Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

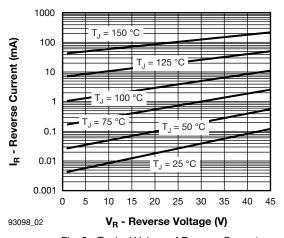



Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

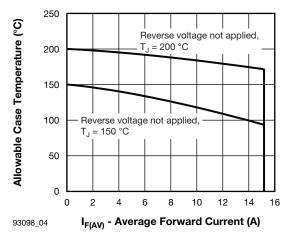



Fig. 4 - Maximum Allowable Case Temperature vs. Average Forward Current

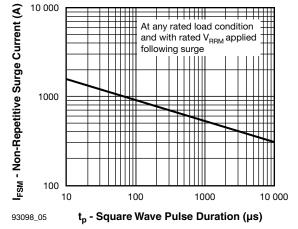



Fig. 5 - Maximum Non-Repetitive Surge Current

# Vishay Semiconductors

## Photovoltaic Solar Cell Protection Schottky Rectifier, 15 A



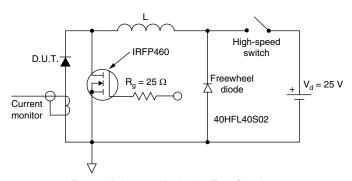
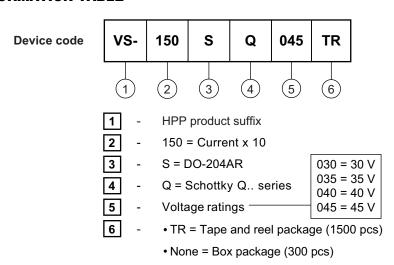




Fig. 6 - Unclamped Inductive Test Circuit

#### **ORDERING INFORMATION TABLE**



| LINKS TO RELATED DOCUMENTS                               |                          |  |  |  |
|----------------------------------------------------------|--------------------------|--|--|--|
| Dimensions <u>www.vishay.com/doc?95243</u>               |                          |  |  |  |
| Part marking information <u>www.vishay.com/doc?95325</u> |                          |  |  |  |
| Packaging information                                    | www.vishay.com/doc?95332 |  |  |  |



Vishay

## **Disclaimer**

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Revision: 18-Jul-08

Document Number: 91000 www.vishay.com